上传:admin | 审核发布:admin | 更新时间:2015-3-23 15:32:04 | 点击次数:665次 |
教学时间 |
|
课题 |
27.2相似三角形 第一课时 相似三角形的判定(一) |
课型 |
新授课 |
|||||||
教 学 目 标 |
知 识 和 能 力 |
掌握两个三角形相似的判定条件(三个角对应相等,三条边的比对应相等,则两个三角形相似)——相似三角形的定义,和三角形相似的预备定理(平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似). |
||||||||||
过 程 和 方 法 |
经历两个三角形相似的探索过程,体验分析归纳得出数学结论的过程,进一步发展学生的探究、交流能力. |
|||||||||||
情 感 态 度 价值观 |
会运用“两个三角形相似的判定条件”和“三角形相似的预备定理”解决简单的问题. |
|||||||||||
教学重点 |
相似三角形的定义与三角形相似的预备定理. |
|||||||||||
教学难点 |
三角形相似的预备定理的应用. |
|||||||||||
教学准备 |
教师 |
多媒体课件 |
学生 |
“五个一” |
||||||||
课 堂 教 学 程 序 设 计 |
设计意图 |
|||||||||||
一、课堂引入 1.复习引入 (1)相似多边形的主要特征是什么? (2)在相似多边形中,最简单的就是相似三角形. 在△ABC与△A′B′C′中, 如果∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且. 我们就说△ABC与△A′B′C′相似,记作△ABC∽△A′B′C′,k就是它们的相似比. 反之如果△ABC∽△A′B′C′, 则有∠A=∠A′, ∠B=∠B′, ∠C=∠C′, 且. (3)问题:如果k=1,这两个三角形有怎样的关系? 2.教材P41的思考,并引导学生探索与证明. 3.【归纳】 三角形相似的预备定理 平行于三角形一边的直线和其它两边相交,所构成的三角形与原三角形相似. 二、例题讲解 例1(补充)如图△ABC∽△DCA,AD∥BC,∠B=∠DCA. (1)写出对应边的比例式; (2)写出所有相等的角; (3)若AB=10,BC=12,CA=6.求AD、DC的长. 分析:可类比全等三角形对应边、对应角的关系来寻找相似三角形中的对应元素.对于(3)可由相似三角形对应边的比相等求出AD与DC的长. 解:略(AD=3,DC=5) 例2(补充)如图,在△ABC中,DE∥BC,AD=EC,DB=1cm,AE=4cm,BC=5cm,求DE的长. 分析:由DE∥BC,可得△ADE∽△ABC,再由相似三角形的性质,有,又由AD=EC可求出AD的长,再根据求出DE的长. 解:略(). 三、课堂练习 1.(选择)下列各组三角形一定相似的是( ) A.两个直角三角形 B.两个钝角三角形 C.两个等腰三角形 D.两个等边三角形 2.(选择)如图,DE∥BC,EF∥AB,则图中相似三角形一共有( ) A.1对 B.2对 C.3对 D.4对 3.如图,在□ABCD中,EF∥AB,DE:EA=2:3,EF=4,求CD的长. (CD= 10)
|
|
|||||||||||
作业 设计 |
必做 |
教科书P54:4、5 |
||||||||||
选做 |
|
|||||||||||
教 学 反 思 |
|
通讯地址: 广州市天河区东圃黄村龙怡苑 (510660)邮箱:lzm6308@163.com 联系QQ:534386438
Copyright © 2008-2012 klxkc.com All Rights Reserved. 粤ICP备15026984号-1