上传:admin | 审核发布:admin | 更新时间:2015-3-30 11:35:51 | 点击次数:839次 |
福建省泉州十五中2014高中数学 3.4 基本不等式导学案1 新人教A版必修5
学习目标
学会推导并掌握基本不等式,理解这个基本不等式的几何意义,并掌握定理中的不等号“≥”取等号的条件是:当且仅当这两个数相等;
学习过程
一、课前准备
看书本97、98页填空
复习1:重要不等式:对于任意实数,有,当且仅当________时,等号成立.
复习2:基本不等式:设,则,当且仅当____时,不等式取等号.
二、新课导学
※ 学习探究
探究1:基本不等式的几何背景:
如图是在北京召开的第24界国际数学家大会的会标,会标是根据中国古代数学家赵爽的弦图设计的,颜色的明暗使它看上去象一个风车,代表中国人民热情好客. 你能在这个图案中找出一些相等关系或不等关系吗?
将图中的“风车”抽象成如图,
在正方形ABCD中有4个全等的直角三角形. 设直角三角形的两条直角边长为a,b那么正方形的边长为____________.这样,4个直角三角形的面积的和是___________,正方形的面积为_________.由于4个直角三角形的面积______正方形的面积,我们就得到了一个不等式:.
当直角三角形变为等腰直角三角形,即a=b时,正方形EFGH缩为一个点,这时有_______________
结论:一般的,如果,我们有
当且仅当时,等号成立.
探究2:你能给出它的证明吗?
特别的,如果,,我们用、分别代替、,可得,
通常我们把上式写作:
问:由不等式的性质证明基本不等?
用分析法证明:
证明:要证 (1)
只要证 (2)
要证(2),只要证 (3)
要证(3),只 要证 (4)
显然,(4)是成立的. 当且仅当a=b时,(4)中的等号成立.
3)理解基本不等式的几何意义
探究:课本第98页的“探究”
在右图中,AB是圆的直径,点C是AB上的一点,AC=a,BC=b. 过点C作垂直于AB的弦DE,连接AD、BD. 你能利用这个图形得出基本不等式的几何解释吗?
结论:基本不等式几何意义是“半径不小于半弦”
评述:
1.如果把看作是正数、的等差中项,看作是正数、的等比中项,那么该定理可以叙述为:两个正数的等差中项不小于它们的等比中项.
2.在数学中,我们称为、的算术平均数,称为、的几何平均数.本节定理还 可叙述为:两个正数的算术平均数不小于它们的几何平均数.
※ 典型例题
例1 (1)用篱笆围成一个面积为100m的矩形菜园,问这个矩形的长、宽各为多少时,所用篱笆最短. 最短的篱笆是多少?
(2)段长为36 m的篱笆围成一个一边靠墙的矩形菜园,问这个矩形的长、宽各为多少时,菜园的面积最大,最大面积是多少?
※ 动手试试
练1. 时,当取什么值时,的值最小?最小值是多少?
练2. 已知直角三角形的面积等于50,两条直角边各为多少时,两条直角边的各最小,最小值是多少?
三、总结提升
※ 学习小结
在利用基本不等式求函数的最值时,应具备三个条件:一正二定三取等号.
1. 已知x0,若x+的值最小,则x为( ).
A. 81 B. 9 C. 3 D.16
2. 若,且,则、、、中最大的一个是( ).
A. B. C. D.
3. 若实数a,b,满足,则的最小值是( ).
A.18 B.6 C. D.
4. 已知x≠0,当x=_____时,x2+的值最小,最小值是________.
5. 做一个体积为32,高为2的长方体纸盒,底面的长为_______,宽为________时,用纸最少.
课后作业
1. (1)把36写成两个正数的积,当这两个正数取什么值时,它们的和最小?
(2)把18写成两个正数的和,当这两个正数取什么值时,它们的积最大?
2. 一段长为30的篱笆围成一个一边靠墙的矩形菜园,墙长18,问这个矩形的长、宽各为多少时,菜园的面积最大?最大面积是多少?
通讯地址: 广州市天河区东圃黄村龙怡苑 (510660)邮箱:lzm6308@163.com 联系QQ:534386438
Copyright © 2008-2012 klxkc.com All Rights Reserved. 粤ICP备15026984号-1