上传:admin | 审核发布:admin | 更新时间:2015-3-29 11:23:21 | 点击次数:869次 |
福建省漳州市芗城中学高中数学 4.3空间直角坐标系教案 新人教A版必修2
一、教学目标
1、知识与技能:掌握空间直角坐标系的有关概念;会根据坐标找相应的点,会写一些简单几何体顶点的有关坐标,掌握空间两点间的距离公式,会应用距离公式解决有关问题。
2、过程与方法:通过空间直角坐标系的建立,空间两点距离公式的推导,使学生初步意识到:将空间问题转化为平面问题是解决空间问题的基本思想方法;通过本节的学习,培养学生类比,迁移,化归的能力。
3、情感态度与价值观:解析几何是用代数方法研究解决几何问题的一门数学学科,在教学过程中要让学生充分体会数形结合的思想,进行辩证唯物主义思想的教育和对立统一思想的教育;培养学生积极参与,大胆探索的精神。
二、教学重点、难点
重点:建立空间直角坐标系;
难点:用空间直角坐标系刻画点的位置和根据点的位置表示出点的坐标。
三、教学过程
(一)创设问题情景
问题1:借助平面直角坐标系,我们就可以用坐标表示平面上任意一点的位置,那么空间的点如何表示呢?
(二)知识探求
1、空间直角坐标系:
问题2:如何建立空间直角坐标系?
(1)在平面直角坐标系的基础上,通过原点再增加一根竖轴,就成了空间直角坐标系。
(2)如无特别说明,本书建立的坐标系都是右手直角坐标系。
(3)空间直角坐标系的“三要素”:原点、坐标轴方向、单位长度。
(4)在平面上画空间直角坐标系O-xyz时,一般使,,且使y轴和z轴的单位长度相同,x轴上的单位长度为y轴(或z轴)的单位长度的一半,即用斜二测的方法画。
2、思考交流:
为什么空间的点M能用有序实数对 (x,y,z) 表示?
设点M为空间直角坐标系中的一点,过点M分别作垂直于x轴、y轴、z轴的平面,依次交x轴、y轴、z轴于P、Q、R点,设点P、Q、R在x轴、y轴、z轴上的坐标分别是x、y和z,那么点M就有唯一确定的有序实数组 (x,y,z);
反过来,给定有序实数组 (x,y,z),可以在x轴、y轴、z轴上依次取坐标为x、y和z的点P、Q和R,分别过P、Q和R点各作一个平面,分别垂直于x轴、y轴、z轴,这三个平面的唯一的交点就是有序实数组 (x,y,z) 确定的点M。
3、例题剖析:
例1、如图,在长方体OABC—D1A1B1C1中,|OA| = 3,|OC| = 4,|OD1| = 2,写出D1,C,A1,B1四点的坐标。
分析:D1(0,0,2),C(0,4,0),A1(3,0,2),B1(3,4,2)。
例2、结晶体的基本单位称为晶胞,如图是食盐晶胞的示意图(可看成是八个棱长为的小正方体堆积成的正方体),其中色点代表钠原子,黑点代表氯原子。如图建立空间直角坐标系Oxyz后,试写出全部钠原子所在位置的坐标。
分析:
下层钠原子的坐标:(0,0,0),(1,0,0),(1,1,0),(0,1,0)(,,0);
中层钠原子的坐标:(,0,),(1,,),(,1,),(0,,);
上层钠原子的坐标:(0,0,1),(1,0,1),(1,1,1),(0,1,1),(,,1)。
4、反馈练习:课本P136,练习1,2,3。
(三)知识迁移:空间两点间的距离公式
1、思考:类比平面两点间距离公式的推导,你能猜想一下空间两点间的距离公式吗?
解决问题:
(1)设点P的坐标是 (x,y,z),求点P到坐标原点O的距离。
如图,设点P在xOy平面上的射影是B,则点B的坐标是 (x,y,0),
在平面xOy上,有,
在Rt△OBP中,根据勾股定理,
因为 | BP | = | z |,所以。
(2)探究:如果 | OP | 是定长,那么表示什么图形?
表示空间中以原点O为圆心,r为半径的球。
(3)空间两点间的距离公式:
设,在平面xOy上的射影分别为,,
所以,
过点P1作P1H⊥P2N于H,则|MP1| = |z1|,|MP2| = |z2|,所以|HP2| =
通讯地址: 广州市天河区东圃黄村龙怡苑 (510660)邮箱:lzm6308@163.com 联系QQ:534386438
Copyright © 2008-2012 klxkc.com All Rights Reserved. 粤ICP备15026984号-1