上传:admin | 审核发布:admin | 更新时间:2015-3-30 9:20:24 | 点击次数:814次 |
天津市第二南开中学2014高中数学 1.1 正弦定理和余弦定理导学案 新人教A版必修5
一、相关复习
复习1:在解三角形时
已知三边求角,用 定理;
已知两边和夹角,求第三边,用 定理;
已知两角和一边,用 定理.
复习2:在△ABC中,已知 A=,a=25,b=50,解此三角形.
思考:解的个数情况为何会发生变化?
新知:用如下图示分析解的情况(A为锐角时).
试试:
1. 用图示分析(A为直角时)解的情况?
2.用图示分析(A为钝角时)解的情况?
◆ 典型例题
例1. 在ABC中,已知,,,试判断此三角形的解的情况.
变式:在ABC中,若,,,则符合题意的b的值有_____个.
例2. 在ABC中,,,,求的值.
变式:在ABC中,若,,且,求角C.
◆ 动手试试
1. 已知a、b为△ABC的边,A、B分别是a、b的对角,且,则的值=( ).
A. B. C. D.
2. 已知在△ABC中,sinA∶sinB∶sinC=3∶5∶7,那么这个三角形的最大角是( ).
A.135° B.90°
C.120° D.150°
3. 如果将直角三角形三边增加同样的长度,则新三角形形状为( ).
A.锐角三角形 B.直角三角形
C.钝角三角形 D.由增加长度决定
4. 在△ABC中,sinA:sinB:sinC=4:5:6,则cosB= .
5. 已知△ABC中,,试判断△ABC的形状 .
6. 在ABC中,,,,如果利用正弦定理解三角形有两解,求x的取值范围.
7. 在ABC中,其三边分别为a、b、c,且满足,求角C.
8.在△ABC中,sinA=,判断三角形的形状.
◆ 知识拓展
在ABC中,已知,讨论三角形解的情况 :①当A为钝角或直角时,必须才能有且只有一解;否则无解;
②当A为锐角时,
如果≥,那么只有一解;
如果,那么可以分下面三种情况来讨论:
(1)若,则有两解;
(2)若,则只有一解;
(3)若,则无解.
通讯地址: 广州市天河区东圃黄村龙怡苑 (510660)邮箱:lzm6308@163.com 联系QQ:534386438
Copyright © 2008-2012 klxkc.com All Rights Reserved. 粤ICP备15026984号-1