上传:gxda147369 | 审核发布:admin | 更新时间:2015-7-16 10:36:14 | 点击次数:663次 |
5.3.1平行线的性质
【学习目标】
1.使学生理解平行线的性质,能初步运用平行线的性质进行有关计算.
2.通过本节课的教学,培养学生的概括能力和“观察-猜想-证明”的探索方法,培养学生的辩证思维能力和逻辑思维能力.
3.培养主体意识,渗透讨论的数学思想,培养学生思维的灵活性和广阔性.
【学习重点】平行线性质的研究和发现过程是本节课的重点.
【学习难点】正确区分平行线的性质和判定是本节课的难点.
【教学流程】
一、课前检测
平行线判定方法:
二、自主学习
(一)平行线性质
1、观察思考:教材19页思考
2、探索活动:完成教材18页探究
3、归纳性质:
同位角 。
两条平行线被第三条直线所截, 。
。
∵a∥b(已知)
同位角 。 ∴∠1=∠5(两直线平行,同位角相等)
∵a∥b(已知)
两直线平行 。 ∴∠3=∠5( )
∵a∥b(已知)
。 ∴∠3+∠6=180°( )
(二)证明性质的正确性:
1、性质1→性质2:如右图,∵a∥b(已知)
∴∠1=∠2( )
又∵∠3=∠1(对顶角相等)。
∴∠2=∠3(等量代换)。
2、性质1→性质3:如右图,∵a∥b(已知)
∴∠1=∠2( )
又∵ ( )。
∴ 。
(三)两条平行线的距离
1、如图,已知直线AB∥CD,E是直线CD上任意一点,过E向直线 AB作垂线,垂足为F,这样做出的垂线段EF的长度是平行线的距离。
2、结论:两条平行线的距离处处相等,而不随垂线段的位置而改变
3、对应练习:如右图,已知:直线m∥n,A、B为 C D
直线n上的两点,C、D为直线m上的两点。 m
(1)请写出图中面积相等的各对三角形;
(2)如果A、B、C为三个定点,点D在m上移动。
那么,无论D点移动到任何位置,总有三角形 与 n
三角形ABC的面积相等,理由是 。 A B
三、探究展示
例 (教材19)如图是一块梯形铁片的残余部分,量得∠A=100°,∠B=115°, 梯形另外两个角分别是多少度?
分析 ①梯形这条件说明 ∥ 。
②∠A与∠D、∠B 与∠C的位置关系是 ,数量关系是 。
四、要点归纳
五、中考链接
(一)选择题:
1.如图1所示,AB∥CD,则与∠1相等的角(∠1除外)共有( )
A.5个 B.4个 C.3个 D.2个
(1) (2) (3)
2.如图2所示,CD∥AB,OE平分∠AOD,OF⊥OE,∠D=50°,则∠BOF为( )
A.35° B.30° C.25° D.20°
3.∠1和∠2是直线AB、CD被直线EF所截而成的内错角,那么∠1和∠2 的大小关系是( )
A.∠1=∠2 B.∠1>∠2; C.∠1<∠2 D.无法确定
4.一个人驱车前进时,两次拐弯后,按原来的相反方向前进, 这两次拐弯的角度是( )
A.向右拐85°,再向右拐95°; B.向右拐85°,再向左拐85°
C.向右拐85°,再向右拐85°; D.向右拐85°,再向左拐95°
【总结反思】
通讯地址: 广州市天河区东圃黄村龙怡苑 (510660)邮箱:lzm6308@163.com 联系QQ:534386438
Copyright © 2008-2012 klxkc.com All Rights Reserved. 粤ICP备15026984号-1