上传:gxda147369 | 审核发布:admin | 更新时间:2015-7-16 11:09:25 | 点击次数:580次 |
第九章不等式与不等式组
9.1.1不等式及其解集
学习目标:
1、了解不等式的概念,能用不等式表示简单的不等关系。
2、知道什么是不等式的解,什么是解不等式,并能判断一个数是否是一个不等式的解。
3、理解不等式的解集,能用数轴正确表示不等式的解集,对于一个较简单的不等式能直接说出它的解集。
4、了解一元一次不等式的概念。
学习重点与难点
重点:不等式的解集的表示.
难点:不等式解集的确定.
学习过程
一、课前预习部分
用圈、点、勾、划、记的方法有效预习P121—123,完成下列问题:
1、数量有大小之分,它们之间有相等关系,也有不等关系,请你用恰当的式子表示出下列数量关系:
(1)a与1的和是正数; (2)y的2倍与1的和大于3; (3)x的一半与x的2倍的和是非正数;
(4)c与4的和的30%不大于-2; (5)x除以2的商加上2,至多为5;
(6)a与b两数的和的平方不可能大于3.
解:(1)__________(2)___________(3)_____________(4)___________ (5)_____________(6)
像上面那样,用符号“____”或“____”表示________关系的式子叫做不等式;用“_____”表示不等关系的式子也是不等式。
2、当x=78时,不等式x﹥50成立,那么78就是不等式x﹥50的解。
与方程类似,我们把使不等式______的____________叫做不等式的解。
完成P122思考中提出的问题。
3、一个含有未知数的不等式的________的解,组成这个不等式的_________。
求不等式的_______的过程叫做解不等式。
4、认真阅读P122小贴士,说出下列两个数轴所表示解集的不同之处,并与你的同伴交流:
(1)
(2)
你能画出数轴并在数轴上表示出下列不等式的解集吗?
(1)x﹥3 (2)x﹤2 (3)y≥-1
5、类似于一元一次方程,含有___________,未知数的次数是____的不等式,叫做一元一次不等式。
二、课堂探究部分(先独立完成,再小组讨论完善答案)
1、对于下列各式中:①3﹥2;②x≠0;③a﹤0;④x+2=5;⑤2x+xy+y;⑥ +1﹥5;
⑦a+b﹥0.不等式有______________(只填序号),一元一次不等式有 __________.
2、下列哪些数值是不等式x+3﹥6的解?那些不是?
-4, -2.5, 0, 1, 2.5, 3, 3.2, 4.8, 8, 12 .
你还能找出这个不等式的其他解吗?这个不等式有多少个解?
3、用不等式表示.
(1)a与5的和是正数; (2)b与15的和小于27;
(3)x的4倍大于或等于8; (4)d与e的和不大于0.
4、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+2﹥6; (2)2x﹤10; (3)x-2≥0.5.
三、自我检测反馈部分(独立完成)
1、下列数学表达式中,不等式有( )
①-3﹤0;②4x+3y﹥0;③x=3;④x≠2;⑤x+2﹥y+3
(A) 1个. (B)2个. (C)3个. (D)4个.
2、当x=-3时,下列不等式成立的是( )
(A)x-5﹤-8. (B)2x+2﹥0. (C)3+x﹤0. (D)2(1-x)﹥7.
3、用不等式表示:
(1)a的相反数是正数; (2)y的2倍与1的和大于3;
(3)a的一半小于3; (4)d与5的积不小于0;
(5)x的2倍与1的和是非正数.
4、直接写出下列不等式的解集,并把解集在数轴上表示出来:
(1)x+3﹥5; (2)2x﹤8; (3)x-2≥0.
拓展延伸:(选做)
1、不等式x﹤4的非负整数解的个数有( )
(A)4个. (B)3个. (C)2个. (D)1个.
2、已知(a-2) -5﹥3是关于x的一元一次不等式试求a的值.
四、小结与反思:
本节课我学会了: ;
我的困惑是: .
通讯地址: 广州市天河区东圃黄村龙怡苑 (510660)邮箱:lzm6308@163.com 联系QQ:534386438
Copyright © 2008-2012 klxkc.com All Rights Reserved. 粤ICP备15026984号-1