上传:gxda147369 | 审核发布:admin | 更新时间:2015-7-19 9:36:18 | 点击次数:722次 |
1.若方程(a+2)x=2的解为x=2想一想不等式(a+4)x>-3的解集是多少?试判断-2,-1,0,1,2,3这6个数中哪些数是该不等式的解.
2.已知2(1-x)<-3x,化简│x+2│-│-4-2x│.
3.已知关于x的不等式2x-m>-3的解集如图所示求m值.
4.(08嘉兴市)一个农机服务队有技术员工和辅助员工共15人,技术员工人数是辅助员工人数的2倍.服务队计划对员工发放奖金共计20000元,按“技术员工个人奖金”(元)和“辅助员工个人奖金”(元)两种标准发放,其中,并且都是100的整数倍.
注:农机服务队是一种农业机械化服务组织,为农民提供耕种、收割等有偿服务.
(1)求该农机服务队中技术员工和辅助员工的人数;
(2)求本次奖金发放的具体方案.
5.某电信局现有600部都已申请装机的固定电话尚待装机,此外每天还有新申请装机的电话边也装机,设每天新申请装机的固定电话部数相同,若安排3个装机小组,恰好60天可将待装固定电话装机完毕;若安排5个装机小组,恰好20天可将待装固定电话装机完毕
(1)求每天新申请装机的固定电话数.
(2)如果要在5天内将待装固定电话装机完毕,那么电信局至少安排几个电话装机小组同时装机?
答案:
1.解:把x=2代入方程(a+2)x=2得2(a+2)=2,a+2=1,a=-1,然后把a=-1代入不等式(a+4)x>-3得3x>-3,把x=-2代入左边3x=-6,右边=-3,-6<-3,∴x=-2不是3x>-3的解;同理把x=-1,x=0,x=1,x=2,x=3分别代入不等式,可知x=0,x=1,x=2,x=3这4个数为不等式的解.
2.解:2(1-x)<-3x,2-2x<-3x,根据不等式基本性质1,两边都加上3x,2+x<0,根据不等式基本性质1,两边都减去2,x<-2,∴x+2<0,-2x>4,∴-4-2x>0,∴│x+2│-│-4-2x│=-(x+2)-(-4-2x)=-x-2+4+2x=x+2.点拨:先利用不等式基本性质化简得x<-2,再根据代数式中要确定x+2,-4-2x的正负性,从而将x<-2不等式利用不等式基本性质变形可得:x+2<0,-4-2x<0最后化简得出结果.
3.解:2x-m>-3,根据不等式基本性质1,两边都加上m,2x>m-3,根据不等式基本性质2,两边都除以2,x>,又∵x>-2,∴=-2,∴m=-1.点拨:解不等式x>,再根据解集得=-2,本题将一元一次方程和一元一次不等式有机地结合起来,同时还利用了数形结合的方法,从数轴上观察一元一次不等式的解集x>-2.
4. 解:(1)设该农机服务队有技术员工人、辅助员工人,
则,解得.
∴该农机服务队有技术员工10人、辅助员工5人.
(2)由,得.
,,
并且都是100的整数倍,
,,.
本次奖金发放的具体方案有3种:
方案一:技术员工每人1600元、辅助员工每人800元;
方案二:技术员工每人1500元、辅助员工每人1000元;
方案三:技术员工每人1400元、辅助员工每人1200元.
5.解:(1)设每天新申请装机x部固定电话,依题意可得:,解得x=20.(2)由(1)可知每个装机小组每天可装电话=10(部),设至少安排a个装机小组同时装机,依题意可得10x×5≥600+20×5,解得x≥14.故最少安排14个装机小组同时装机.点拨:此题装机的固定电话数包括两部分,分别是已申请的600部,后面新申请的固定电话,再由题意中所包含的等量关系,每天每个小组装机数一定从而建立方程,并且可以求算到每个小组每天装机的电话数.(2)因为要在5天内装完所以5天装机数应该大于等于5天里申请的固定电话数,从而建立不等式10x×5≥600+20×5,解得x≥14,因此至少要安排14个装机小组装机.
通讯地址: 广州市天河区东圃黄村龙怡苑 (510660)邮箱:lzm6308@163.com 联系QQ:534386438
Copyright © 2008-2012 klxkc.com All Rights Reserved. 粤ICP备15026984号-1